Fixed-Point-Free Abelian Endomorphisms, Braces, and the Yang-Baxter Equation

Laura Stordy

May 25, 2020

Agnes Scott College

Table of contents

- 1. Fixed-Point-Free Abelian Endomorphisms
- 2. Braces
- 3. The Yang-Baxter Equation
- 4. Constructions

Symmetric Group

Alternating Group

Metacyclic Group

Dihedral Group

Fixed-Point-Free Abelian

Endomorphisms

FPF(G)

Definition

A fixed-point-free abelian endomorphism is a homomorphism $\psi: G \to G$ such that

- $\psi(g) = g$ if and only if $g = 1_G$ and
- $\psi(gh) = \psi(hg)$ for all $g, h \in G$.

We denote the collection of fixed-point-free abelian endomorphisms on a group G as $\mathsf{FPF}(G)$.

Example

Let $C_3=\langle g:g^3=1_G\rangle$. Then $\psi_0(g)=1_G$, $\psi_1(g)=g^2$ are fixed-point-free abelian endomorphisms.

2

FPF(G)

Remark

If G is a nonabelian simple group, then $\mathsf{FPF}(G)$ consists only of the trivial ψ .

Since $\ker \psi \lhd G$, $\ker \psi = \{1_G\}$ or $\ker \psi = G$. The former causes a contradiction where $\psi(gh) \neq \psi(hg)$ for some pair g, h, thus $\ker \psi = G$.

Remark

 ψ is constant on conjugacy classes, since

$$\psi(g) = \psi(ghh^{-1}) = \psi(ghg^{-1}).$$

Remark

Let $\psi \in \mathsf{FPF}(G)$, $\phi \in \mathsf{Aut}(G)$. Since $\phi \psi \phi^{-1} \in \mathsf{FPF}(G)$, $\mathsf{FPF}(G)$ is stable under conjugation by $\mathsf{Aut}(G)$.

3

Regular, *G*-stable Subgroups

For $g \in G$, let $\eta_g = \lambda(g)\rho(\psi(g))$. Denote the collection of all such η_g 's as N^{ψ} . We then have that N^{ψ} is a regular, G-stable subgroup of $\operatorname{Perm}(G)$.

Proposition (Childs)

If $\psi_1, \psi_2 \in \mathsf{FPF}(G)$ differ by an element of Z(G), then $N^{\psi_1} \cong N^{\psi_2}$.

Example

Let $\psi_0 \in \mathsf{FPF}(G)$ denote the trivial fixed-point-free abelian endomorphism, i.e. $\psi_0(g) = 1_G$. Then $N^{\psi_0} = \lambda(G)$.

Braces

Braces

Definition

A left skew brace is a set B, along with two binary operations \cdot and \circ , such that

- (B, \cdot) and (B, \circ) are groups, and
- For all $a, b, c \in B$, $a \cdot (b \circ c) = (a \circ b) \cdot a^{-1} \cdot (a \circ c)$, where a^{-1} denotes the inverse of a in (B, \cdot) .

Denote the inverse of a in (B, \circ) as \overline{a} .

Example

Let (B, \cdot) be a group, and define $a \circ b = a \cdot b$. Then (B, \cdot, \circ) is a brace.

Example

Let $B=\{0,1,2,3,4,5\}$, and define $a\cdot b=a+b \mod 6$ and $a\circ b=a+(-1)^ab \mod 6$. Then (B,\cdot,\circ) is a brace with $(B,\cdot)\cong C_6$ and $(B,\circ)\cong S_3$.

5

Regular Subgroups to Braces

Let N be a regular, G-stable subgroup of Perm(G) and let $a: N \to G$ be given by $a(\eta) = \eta[1_G]$.

Define $\eta \circ \pi = a^{-1}(a(\eta) \star_G a(\pi))$.

Proposition (Smoktunowicz-Vendramin)

 (N, \cdot, \circ) is a brace.

Denote this as $\mathfrak{B}(N)$.

$$\eta \circ \pi = a^{-1}(a(\eta) \cdot a(\pi))$$

Plugging N^{ψ} into this formula yields

$$\eta_{\mathsf{g}} \circ \eta_{\mathsf{h}} = \eta_{\mathsf{g}\psi(\mathsf{g}^{-1})\mathsf{h}\psi(\mathsf{g})}.$$

Verify that this satisfies the brace condition. Note that $\eta_g^{-1} = \eta_{g^{-1}}$.

$$\begin{split} \eta_g \circ \left(\eta_h \eta_k \right) &= \eta_g \circ \eta_{hk} \\ &= \eta_{g\psi(g^{-1})hk\psi(g)} \\ &= \eta_{g\psi(g^{-1})h\psi(g)g^{-1}g\psi(g^{-1})k\psi(g)} \\ &= \eta_{g\psi(g^{-1})h\psi(g)} \eta_{g^{-1}} \eta_{g\psi(g^{-1})k\psi(g)} \\ &= \left(\eta_g \circ \eta_h \right) \eta_g^{-1} (\eta_g \circ \eta_k). \end{split}$$

Brace Classes

Definition

If $\mathfrak{B}(N) \cong \mathfrak{B}(M)$, we say N and M are in the same brace class and call them brace equivalent.

Proposition (Koch-Truman)

$$\mathfrak{B}(N^{\psi_1}) \cong \mathfrak{B}(N^{\psi_2})$$
 if and only if $\psi_1 = \phi \psi_2 \phi^{-1}$.

8

The Yang-Baxter Equation

The Yang-Baxter Equation

Braces were constructed specifically with the objective of describing the set-theoretic solutions to the Yang-Baxter equation, functions $R: B \times B \to B \times B$, such that

$$R_{12}R_{23}R_{12} = R_{23}R_{12}R_{23}$$

where $R_{12}(a, b, c) = (R(a, b), c)$ and $R_{23}(a, b, c) = (a, R(b, c))$.

Given $\mathfrak{B} = (B, \cdot, \circ)$ we construct a solution $R : B \times B \to B \times B$.

Proposition (Guarnieri-Vendramin)

The following is a solution to the YBE:

$$R(a,b) = (a^{-1}(a \circ b), \overline{a^{-1}(a \circ b)} \circ a \circ b).$$

g

$$R(a,b)=(a^{-1}(a\circ b),\overline{a^{-1}(a\circ b)}\circ a\circ b)$$

Example

The trivial brace gives us the solution $R(a, b) = (b, b^{-1}ab)$.

Verify this:

$$R_{12}R_{23}R_{12}(a,b,c) = R_{12}R_{23}(b,b^{-1}ab,c)$$

$$= R_{12}(b,c,c^{-1}b^{-1}abc)$$

$$= (c,c^{-1}bc,c^{-1}b^{-1}abc)$$

$$R_{23}R_{12}R_{23}(a,b,c) = R_{23}R_{12}(a,c,c^{-1}bc)$$

$$= R_{23}(c,cac^{-1},c^{-1}bc)$$

$$= (c,c^{-1}bc,c^{-1}b^{-1}abc).$$

 $R: N^{\psi} \times N^{\psi} \rightarrow N^{\psi} \times N^{\psi}$

We know the complete brace structure for $\mathfrak{B}(N^{\psi})$, so we can construct the Yang-Baxter solution $R: N^{\psi} \times N^{\psi} \to N^{\psi} \times N^{\psi}$.

$$\begin{split} R(\eta_{g},\eta_{h}) &= (\eta_{g}^{-1}(\eta_{g}\circ\eta_{h}),\overline{\eta_{g}^{-1}(\eta_{g}\circ\eta_{h})}\circ\eta_{g}\circ\eta_{h}) \\ &= (\eta_{\psi(g^{-1})h\psi(g)},\overline{\eta_{\psi(g^{-1})h\psi(g)}}\circ\eta_{g\psi(g^{-1})h\psi(g)}) \\ &= (\eta_{\psi(g^{-1})h\psi(g)},\eta_{\psi(hg^{-1})h^{-1}\psi(gh^{-1})}\circ\eta_{g\psi(g^{-1})h\psi(g)}) \\ &= (\eta_{\psi(g^{-1})h\psi(g)},\eta_{\psi(hg^{-1})h^{-1}\psi(g)g\psi(g^{-1})h\psi(gh^{-1})}). \end{split}$$

Constructions

Symmetric Group

Consider S_n , $n \neq 4, 6$.

The only normal subgroups in S_n are $\{\iota\}$, A_n , and S_n . We know $\ker \psi \neq \{\iota\}$, so for ψ to be a nontrivial fixed-point-free abelian endomorphism, $\ker \psi = A_n$.

Fix
$$\tau \in A_n$$
, $|\tau| = 2$.

Then $\psi_{\tau} \in \mathsf{FPF}(S_n)$, ψ_{τ} defined by

$$\psi_{\tau}(\pi) = \begin{cases} \iota \text{ if } \pi \in A_n \\ \tau \text{ if } \pi \notin A_n \end{cases}$$

We can check this: clearly $\{\iota,\tau\}$ is an abelian group, and $\psi_{\tau}(\tau)=\iota$, thus ψ_{τ} has no fixed points.

Symmetric Group

Let
$$\psi_1, \psi_2 \in \mathsf{FPF}(S_n)$$
, $\psi_1(S_n) = \langle \tau_1 \rangle$ and $\psi_2(S_n) = \langle \tau_2 \rangle$ where $\tau_2 = \pi \tau_1 \pi^{-1}$ for some $\pi \in S_n$.

Define $\phi \in \text{Aut}(S_n)$ to be conjugation by π . Then $\psi_2 = \phi \psi_1 \phi^{-1}$, thus $\mathfrak{B}(N^{\psi_1}) \cong \mathfrak{B}(N^{\psi_2})$.

 $R: S_n \times S_n \to S_n \times S_n$

Fix $\tau \in A_n$, $|\tau|=2$. The solution set-theoretic solution to the Yang-Baxter equation arising from $N^{\psi_{\tau}}$ is

$$R(\eta_{\pi}, \eta_{\chi}) = \begin{cases} (\eta_{\tau\chi\tau}, \eta_{\chi^{-1}\tau\pi\tau\chi}) \text{ if } \pi, \chi \notin A_n \\ (\eta_{\tau\chi\tau}, \eta_{\tau\chi^{-1}\tau\pi\tau\chi\tau}) \text{ if } \pi \notin A_n, \ \chi \in A_n \\ (\eta_{\chi}, \eta_{\tau\chi^{-1}\pi\chi\tau}) \text{ if } \pi \in A_n, \ \chi \notin A_n \\ (\eta_{\chi}, \eta_{\chi^{-1}\pi\chi}) \text{ if } \pi, \chi \in A_n \end{cases}.$$

 $R: S_n \times S_n \to S_n \times S_n$

We verify that this solution works in the case where $\pi, \chi, \sigma \notin A_n$:

$$R_{12}R_{23}R_{12}(\pi,\chi,\sigma) = R_{12}R_{23}(\tau\chi\tau,\chi^{-1}\tau\pi\tau\chi,\sigma)$$

$$= R_{12}(\tau\chi\tau,\tau\sigma\tau,\sigma^{-1}\tau\chi^{-1}\tau\pi\tau\chi\tau\sigma)$$

$$= (\sigma,\tau\sigma^{-1}\tau\chi\tau\sigma\tau,\sigma^{-1}\tau\chi^{-1}\tau\pi\tau\chi\tau\sigma)$$

$$R_{23}R_{12}R_{23}(\pi,\chi,\sigma) = R_{23}R_{12}(\pi,\tau\sigma\tau,\sigma^{-1}\tau\chi\tau\sigma)$$

$$= R_{23}(\sigma,\tau\sigma^{-1}\pi\sigma\tau,\sigma^{-1}\tau\chi\tau\sigma)$$

$$= (\sigma,\tau\sigma^{-1}\tau\chi\tau\sigma\tau,\sigma^{-1}\tau\chi^{-1}\tau\pi\tau\chi\tau\sigma)$$

Alternating Group

Let $A_4=\langle \sigma, v \rangle$ with $\sigma=$ (123), v= (124).We have four nontrivial fixed-point-free abelian endomorphisms on A_4 :

1.
$$\psi_1(\sigma) = \sigma^2, \ \psi_1(v) = \sigma$$

2.
$$\psi_2(\sigma) = v$$
, $\psi_2(v) = v^2$

3.
$$\psi_3(\sigma) = \psi^2 \sigma$$
, $\psi_3(\psi) = \sigma^2 \psi$

4.
$$\psi_4(\sigma) = \sigma v^2$$
, $\psi_4(v) = v\sigma^2$.

Alternating Group

The subgroups arising from the four nontrivial ψ 's listed above are brace equivalent.

Let
$$\psi_a(\sigma) = \alpha$$
, $\psi_a(\upsilon) = \alpha^2$; $\psi_b(\sigma) = \beta$, $\psi_b(\upsilon) = \beta^2$. We have $\beta = \gamma \alpha \gamma^{-1}$ for some $\gamma \in S_4$.

Consider
$$\phi: A_4 \to A_4, \phi(\pi) = \gamma \pi \gamma^{-1}$$
 for all $\pi \in A_4$. Then $\phi \psi_a \phi^{-1} = \psi_b$, so $\mathfrak{B}(N^{\psi_1}) \cong \mathfrak{B}(N^{\psi_2})$.

$$R: A_4 \times A_4 \rightarrow A_4 \times A_4$$

Let
$$A_4 = \langle \sigma, v \rangle$$
, $\psi \in \mathsf{FPF}(A_4)$, $\psi(\sigma) = \alpha, \psi(v) = \alpha^2$.

Denote the conjugacy class of σ by $[\sigma]$, etc.

The values of $R(\eta_{\pi}, \eta_{\chi})$ are given in the following table:

$$\begin{array}{lll} \chi \in [\sigma] & \chi \in [\upsilon] & \chi \in [\sigma \upsilon] \\ \pi \in [\sigma] & (\eta_{\alpha^2\chi\alpha}, \eta_{\chi^2\alpha\pi\alpha^2\chi}) & (\eta_{\alpha^2\chi\alpha}, \eta_{\alpha\chi^2\alpha\pi\alpha^2\chi\alpha^2}) & (\eta_{\alpha^2\chi\alpha}, \eta_{\alpha^2\chi\alpha\pi\alpha^2\chi\alpha}) \\ \pi \in [\upsilon] & (\eta_{\alpha\chi\alpha^2}, \eta_{\alpha^2\chi^2\alpha^2\pi\alpha\chi\alpha}) & (\eta_{\alpha\chi\alpha^2}, \eta_{\chi^2\alpha^2\pi\alpha\chi}) & (\eta_{\alpha\chi\alpha^2}, \eta_{\alpha\chi\alpha^2\pi\alpha\chi\alpha^2}) \\ \pi \in [\sigma \upsilon] & (\eta_{\chi}, \eta_{\alpha\chi^2\pi\chi\alpha^2}) & (\eta_{\chi}, \eta_{\alpha^2\chi^2\pi\chi\alpha}) & (\eta_{\chi}, \eta_{\chi\pi\chi}) \end{array}$$

Note $R(\eta_{\iota}, \eta_{\chi}) = (\eta_{\chi}, \eta_{\iota})$ and $R(\eta_{\pi}, \eta_{\iota}) = (\eta_{\iota}, \eta_{\pi})$.

Metacyclic Group

Let $M_{pq}=\langle s,t:s^p=s^q=1,ts=s^dt\rangle$ where d has order q in \mathbb{Z}_p^{\times} and $p\equiv 1 \bmod q$.

The fixed-point free abelian endomorphisms on M_{pq} are of the form $\psi_{j,k}: M_{pq} \to M_{pq}, \ \psi_{j,k}(s) = 1, \psi_{i,j}(t) = s^j t^k$, with $k \neq 1$, and k = 0 only if j = 0.

$$\psi_{j,k}(s) = 1, \psi_{i,j}(t) = s^j t^k$$

We can show that $\mathfrak{B}(N^{\psi_{1,k}}) \cong \mathfrak{B}(N^{\psi_{j,k}})$.

Let $\psi_{j,k} \in \mathsf{FPF}(M_{pq})$, $\psi_{j,k}(s) = 1$, $\psi_{j,k}(t) = s^j t^k$.

Case 1: $i \neq 0$.

Let $\phi \in Aut(M_{pq})$, $\phi(s) = s^j$, $\phi(t) = t$.

Then $\phi \psi_{1,k} = \psi_{j,k} \phi$.

Case 2: j = 0.

Pick m such that

$$(1+d+d^2+\cdots+d^{k-1})m\equiv -1 \bmod p,$$

and define $\phi \in \operatorname{Aut}(G)$ by $\phi(s) = s, \phi(t) = s^m t$.

Then $\phi \psi_{1,k} = \psi_{0,k} \phi$.

Dihedral Group

Let
$$D_n = \langle r, s : r^n = s^2 = rsrs = 1 \rangle$$
.

Childs 2013 gives us $FPF(D_n)$.

If n is odd, there are no nontrivial ψ 's on D_n .

For n even, omitting the maps that differ by an element of the center, we have

- 1. $\psi(r) = 1, \psi(s) = 1$
- 2. $\psi(r) = r^{i}s, \psi(s) = 1$, *i* even
- 3. $\psi(r) = r^{i}s, \psi(s) = r^{i}s, i \text{ odd.}$

Dihedral Group

All braces given by nontrivial ψ 's are isomorphic.

1.
$$\psi(r) = r^i s$$
, $\psi(s) = 1$, i even

2.
$$\psi(r) = r^{i}s, \psi(s) = r^{i}s, i \text{ odd.}$$

Let
$$\psi_1 \in \mathsf{FPF}(D_{2m})$$
, $\psi_1(r) = r^2 s$, $\psi_1(s) = 1$.

Pick
$$\phi \in Aut(D_{2m})$$
, $\phi(r) = r$, $\phi(s) = r^{i-2}s$.

Then $\phi\psi_1=\psi\phi$ for all other ψ 's.

$$R(\eta_{\mathsf{g}},\eta_{\mathsf{h}}) = (\eta_{\psi(\mathsf{g}^{-1})\mathsf{h}\psi(\mathsf{g})},\eta_{\psi(\mathsf{h}\mathsf{g}^{-1})\mathsf{h}^{-1}\psi(\mathsf{g})\mathsf{g}\psi(\mathsf{g}^{-1})\mathsf{h}\psi(\mathsf{g}\mathsf{h}^{-1})})$$

1.
$$\psi(r) = r^i s$$
, $\psi(s) = 1$, i even: $\ker \psi = \langle r^2, s \rangle$

2.
$$\psi(r) = r^i s$$
, $\psi(s) = r^i s$, i odd: $\ker \psi = \langle r^2, rs \rangle$

$$R(\eta_{g}, \eta_{h}) = \begin{cases} (\eta_{r^{i}shr^{i}s}, \eta_{h^{-1}r^{i}sgr^{i}sh}) \text{ if } g, h \notin \ker \psi \\ (\eta_{r^{i}shr^{i}s}, \eta_{r^{i}sh^{-1}r^{i}sgr^{i}shr^{i}s}) \text{ if } g \notin \ker \psi, h \in \ker \psi \\ (\eta_{h}, \eta_{r^{i}sh^{-1}ghr^{i}s}) \text{ if } g \in \ker \psi, h \notin \ker \psi \\ (\eta_{h}, \eta_{h^{-1}gh}) \text{ if } g, h \in \ker \psi \end{cases}$$

Thank you!